

Displacement damage stabilization by hydrogen presence under simultaneous W ion damaging and D ion exposure

S. Markelj¹, T. Schwarz-Selinger², M. Pečovnik¹, M. Kelemen^{1,3}

¹Jožef Stefan Institute, Ljubljana, Slovenia

² Max-Planck-Institut für Plasmaphysik (IPP), Garching, Germany

^cJožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia

WP PFC

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Fusion device scenario D/T plasma exposure + neutron irradiation

Outline

- > Different displacement damaging procedures
- > Comparison between:
 - ➤ Sequential W ion irradiation and D exposure
 - ➤ Simultaneous *W* ion irradiation and *D* exposure
- Comparison atoms versus ions
- Conclusions

14 MeV neutron irradiation Displacement damage creation

Influence of neutron irradiation on D retention activation of samples, long irradiation time, 14 MeV neutrons not available (fission neutrons)!

High energy ion damaging

MeV W ion irradiation = Surrogate for neutron irradiation

- Dense cascades and no chemical effect
- No transmutation

SRIM calculation of ion trajectory

Displacement damage creation MeV W ion irradiation

W ion irradiation by MeV W ions

Creation of displacement damage

Damaged layer characterization by Scanning Transmission Electron Microscopy [Zaloznik et al. Phys Scr. T167 (2016) 014031]

Displacement damage creation MeV W ion irradiation

W ion irradiation by MeV W ions

- Creation of displacement damage
- Increased fuel retention in ion damaged W material from ~ 10⁻³ at. %

 [¬] ~ 1 at. %
- D saturation observed at damage dose > 0.2dpa for RT W irradiation! [Alimov et al. JNM 2013, Hoen et al. NF 2012, Schwarz-Selinger FEC 2018]

Simultaneous W/D exposure

Simultaneous W/D exposure:

W ion irradiation
D exposure

@ different high temperatures

Simultaneous W/D-D exposure

Simultaneous W/D-D exposure:

W ion irradiation @ different high D exposure temperatures

D exposure

@ low temperature to populate created traps

 D retention a way to determine defect concentration

Sequential W-D exposure

Sequential W-D exposure:

W ion irradiation @ different high temperatures

D exposure

@ low temperature to populate created traps

 D retention a way to determine defect concentration

Experiment with atoms – 0.28 eV/D

- Simultaneous/sequential W/D, W-D atom loading
- Defect population exposure D atoms @ 600 K − fluence 3.7 ×10²³ D/m²

Analysis methods:

- Deuterium depth profile measurement by Nuclear Reaction Analysis (NRA)
- TDS final step D desorption kinetics and D amount

Effect of D presence – atom exposure Comparison of D concentration

- Neutron damaging simulated by self implantation
- Simultaneous W ion damaging and D atom loading

Comparison to different damaging procedures

❖ Sequential: Damage at T^{EXP}; D population at 600 K

Effect of D presence – atom exposure Comparison of D concentration

- Neutron damaging simulated by self implantation
- Simultaneous W ion damaging and D atom loading

Comparison to different damaging procedures

- ❖ Sequential: Damage at T^{EXP}; D population at 600 K
- ❖ Simultaneous: Damage & D exposure at T^{EXP}; D population at 600 K
- ✓ Observed synergistic effects but not dramatic 30 % increase
- ✓ Competition between defect annihilation at elevated temp. and defect stabilization by D

For more details see:

- S. Markelj, et al, Nuclear Materials and Energy 12 (2017) 169.
- E. Hodille et al. Nucl. Fusion **59** (2019) 016011

Experiment with ions–300 eV/D

- Simultaneous/sequential W/D, W-D ion loading
- ▶ Defect population exposure D ions @ 450 K fluence 2.7×10²³ D/m²

Analysis methods:

- Deuterium depth profile measurement by Nuclear Reaction Analysis (NRA)
- TDS final step D desorption kinetics and D amount
- S. Markelj et al, Nucl. Fusion (2019) in press
- M. Pecovnik et al. submitted to Nucl. Fusion

TDS - Sequential experiment

W ion damaging at 300 K – sequential

D atom exposure at 600K

- ✓ Single peak
- ✓ Two de-trapping energies 1.82 eV and 2.06 eV

D ion exposure at 450K

- ✓ Double peak
- ✓ Five de-trapping energies 1.35 eV - 2.09 eV
- ✓ 3x higher D amount

 Rate equation modelling

 (MHIMS, Hodille et al.

 JNM 2017)

Simultaneous W/D exposure

Simultaneous W/D exposure:

W ion irradiation @ 450 K
D ion exposure

4h simultaneous W/D

W ions – flux 9. 73×10^{13} W/m²s – 0.34 dpa D ions – Ion flux=1.4x10¹⁸ D/m²s Γ_D =2.0x10²² D/m²

Simultaneous W/D exposure @ 450 K D depth profile

Simultaneous W/D-D exposure @ 450 K

Simultaneous W/D-D exposure:

W ion irradiation @ 450 K

D ion exposure

D ion exposure

@ 450 K – to

populate created

traps

4h simultaneous W/D

W ions – flux 9. 73×10^{13} W/m²s – 0.34 dpa

D ions - Ion flux= $1.4x10^{18}$ D/m²s.

D fluence=2.0x10²² D/m²

+

41h D ion exposure - D fluence 2.1×10²³ D/m²

Simultaneous W/D-D exposure @ 450 K D depth profile

Sequential W-D exposure

Sequential W-D exposure:

Wion irradiation @ 450 K

+

D ion exposure

@ 450 K to populate created traps

4h W irradiation

W ions – flux 9. 73×10^{13} W/m²s – 0.34 dpa +

39 h D ion exposure - D fluence 2.0×10²³ D/m²

D depth profile comparison @ 450 K

D depth profile comparison @ 450 K

- Difference in D
 concentration in the
 region where D was
 trapped during the
 1. step simultaneous
 W/D
- > Factor of 2 difference

D depth profile comparison @ 450 K

- Difference in D concentration in the region where D was trapped during the 1. step simultaneous W/D
- Factor of 2 difference
- Comparison to older measurement – D depth profile similar with stepped distribution

Comparison TDS sequential / simultaneous

- Defect population by 300eV/D ion exposure at 450K
- ✓ No drastic change in TDS peak shape double peak for both cases
- ✓ Temperature dependence also for individual traps

D depth profile comparison – all temperatures

Sequential W-D exposure

Sequential W-D exposure

- D concentration decreases
 with irradiation temperature
- Less defects created at elevated temperatures

Comparison to Simultaneous W/D-D exposure

Sequential W-D exposure

- Simultaneous W/D-D exposure
- Increase of D concentrationlarger defect concentration
- Strong temperature dependence:
- 450 K 2.1
- 600 K 1.7
- 800 K 1.1
- 1000 K 2.1

Simultaneous W/D exposure D depth profiles – all temperatures

Simult. W/D

2.5

2.0

1.5

1.0

0.4

0.3

L.o Damage (

0.0

2.5

2.0

450K

Simultaneous W/D exposure:

- Depth profiles after first 4h
- **Temperature** determines the speed of diffusion and population of traps by D
- **Lower D retention at** high temperatures due to thermal D detrapping

D concentration [at.%.] 600K 0.5 800K 1000K 0.0 0.0 0.5 1.5 2.0 1.0 Depth [μm]

Concentration [at. %.]

0.5

1.0

Depth [µm]

Defect stabilization dependent on the D concentration during the simultaneous W/D

Comparison ions versus atoms

stabilization by D presence

S. Markelj et al. | MoD PMI 2019, Japan | Page 31

 $T_{exp}[K]$

Effect of presence of D Ab-initio calculations

Fusion device scenario neutron irradiation during D/T plasma exposure

Two possible effects

Density Functional Theory (DFT) calculation with hydrogen in interstitial tetrahedral site in W [S.C. Middleburgh et al., JNM 448 (2014) 270–275]:

- 25% lower than the vacancy formation energy in W without H.
- Higher probability of defect creation due to presence of H

DFT calculation with hydrogen cluster in a vacancy in W [D. Kato et al., NF **55** (2015) 083019]:

- Hydrogen cluster prevents vacancy from recombining with adjacent selfinterstitial atoms (1 1 1-crowdion)
- Lower probability for defect annihilation due to trapped D

Stabilization by D trapping

We have upgraded the damage creation model, first introduced by Duesing *et al.* 1969, Ogorodnikov JAP 2008, Hodille NF 2018 - by including a stabilization mechanism:

$$\frac{dn_i(x,t)}{dt} = \frac{\Gamma \eta_i \theta(x)}{\rho} \left[1 - \frac{n_i(x,t)}{n_{i,\max}} \left(1 - \alpha_i \frac{n_i(x,t) - n_i^0(x,t)}{n_i(x,t)} \right) \right]$$

Defects are stabilized to a degree by D trapped in them, meaning that the probability for a Frenkel pair annihilation is lower. Stabilization is parametrized by a free parameter denoted as α_i .

 Γ ... W ion flux (W m⁻²s⁻¹) η ... Creation probability (m⁻¹) $\theta(x)$... SRIM dam. distribution (1) $n_{i,max}$... Saturation density (1 (at. fr.))

M. Pečovnik et al. under review in Nucl. Fusion

Experiment versus modelling

VACANCIES – 2 fill levels
S. VACANCY CLUSTERS – 2 fill levels
L. VACANCY CLUSTERS – 1 fill level

D depth profiles

Stabilization by trapped D

Conclusions

Study of D presence on displacement damage stabilization

Sequential W-D experiment

Decreased D retention with higher temperature

Simultaneous W/D-D experiment

- Effect of stabilization of defects increased for ion exposure as compared to atoms
- > Observed temperature dependence of defect stabilization
- Concentration of created traps dependent on D concentration during the simultaneous W/D
- > Increase of D concentration at 1000 K unclear
- Fusion scenario: higher fluxes of hydrogen fuel higher D concentration at high temperatures – larger effect

References - ions

- S. Markelj, et al, Nucl. Fusion (2019) in press
- M. Pečovnik et al. under review Nucl. Fusion

References atoms:

- S. Markelj, et al, Nuclear Materials and Energy 12 (2017) 169.
- E. Hodille et al. Nucl. Fusion 59 (2019) 016011

D mobile concentration comparison

